Subject	Year 12 Core Knowledge –	How to support students' learning
-	Autumn/Spring/Summer term	
Science -	Autumn Torm	
Science –	Rielegy	
Forensics	Diology –	 Pearson BTEC National Applied Science
	1. Olderstalld cell theory states that	student book (2016). Author – Joanne
	cells are the function and	Hartley.
	organisation in all living organisms	• Seneca: https://senecalearning.com/en-GB/
	Organisation in an inving organisms.	Eree revision resource
	2. State and describe the structure	
	prokaryotic and eukaryotic cells	
	2 Understand detailed similarities	
	and differences between animal	
	and differences between animal	
	A Calculate magnification and size of	
	Calculate magnification and SIZE OF	
	5 Understand cell specialisation in	
	terms of structure and function in	
	examples such as palisade cells red	
	and white blood cells and gamete	
	cells	
	6. Understand the structure and	
	function in epithelial tissue	
	including squamous and columnar.	
	7. Understand the structure and	
	function of endothelial tissue by	
	blood vessels and the risk factors	
	associated with the damage of	
	these.	
	8. Understand the structure and	
	function of muscular tissue	
	including fast and slow twitch	
	muscle fibres.	
	9. Understand the structure and	
	function of nervous tissue	
	including conduction of nerve	
	impulses and the effects of drugs	
	on these.	
	10. Understand the role and effect of	
	neurotransmitters and how	
	imbalances can effect the body.	
	11. Interpret graphical displays of a	
	nerve impulse and	
	electrocardiogram recordings.	
	Chemistry –	
	12. Understand the electronic	
	structure of atoms (spdf).	

13. Define ionic bonding and describe	
the factors that affect the strength	
of an ionic bond.	
14. Define covalent bonding and draw	
dot and cross diagrams accurately.	
15. Explain the relationship between	
covalent bond lengths and bond	
strength.	
16. Define metallic bonding, draw	
metallic compounds accurately and	
compare metallic bond strengths.	
17. Describe and compare the three	
types of intermolecular forces and	
how they arise.	
18. Calculate moles and concentrations	
to work out different quantities of	
substances.	
19. Understand how to carry out a	
titration experiment and complete	
titration calculations.	
20. Understand what a yield is and	
apply knowledge to calculate	
percentage yield.	
21. Demonstrate an understanding of	
it is ordered	
It is ordered.	
22. Demonstrate an understanding of	
23 Define first ionisation energy and	
describe the trends in ionisation	
across periods and groups	
24 Define electronegativity and	
explain the factors that effect it	
25. Define electron affinity and explain	
the factors that effect it.	
26. Describe and explain the physical	
properties of metals.	
27. Describe the reactivity of group 2	
and 3 elements with oxygen.	
28. Describe the reactivity of metals	
with oxygen, water and acids.	
29. State what oxidation and reduction	
are and explain how these happen	
during a displacement reaction.	
Physics –	
30. Understand the features common	
to all waves such as wavelength,	
amplitude and oscillation.	
31. Calculate wavelength and speed of	
waves.	

32. Interpret graphical representations	
of wave features.	
Understand the difference	
between transverse and	
longitudinal waves.	
34. Understand concepts of	
displacement, coherence, path	
difference, phase difference and	
superposition as applied to	
diffraction gratings.	
35. Understand the industrial	
application of diffraction gratings	
including emission spectra and	
identifying gases.	
36. Understand the concept and	
applications of stationary waves	
resonance.	
37. Understand principles of fibre	
optics.	
38. Understand the applications of	
fibre optics in medicine and	
communication.	
39. Understand that all	
electromagnetic waves travel with	
the same speed in a vacuum.	
40. Use the inverse wave law in	
A1 Understand how regions of the	
41. Olderstand now regions of the	
grouped according to frequency	
including satellite communication	
mobile phones infrared and wifi	
mobile phones, initiated and will.	
Spring Term	
Biology –	
42. Understand the theory, equipment	
used and procedures for carrying	
out chromatography.	
43. Demonstrate an understanding of	
paper chromatography.	
44. Demonstrate an understanding of	
thin layer chromatography.	
45. Describe how to accurately prepare	
a sample.	
46. Identify unknown mixtures and	
pure substances using	
chromatography, to include amino	
acids (paper chromatography).	
47. Interpret chromatograms to	
understand the polarity of	
molecules/intermolecular forces in	

relation to solubility in the mobile	
and stationary phase.	
48. Interpret chromatograms to	
understand the size of molecules in	
relation to solubility and mobility.	
49. Accurately calculate of Rf values	
from chromatograms and data.	
50. Understand how to interpret	
chromatograms in terms of the	
number of substances present and	
the Ri values of components.	
Chemistry –	
51. Understand how to use pH meters	
and probes.	
52. Demonstrate an understanding of	
the use of electronic balances and	
how to calibrate them.	
53. Demonstrate the safe and accurate	
use of volumetric glassware.	
54. Accurately carry out titration	
experiments and determine the	
end point with precision.	
55. Calculate the unknown	
concentration of a substance from	
titration results.	
56. Understand how a colorimeter is	
used and now to select the correct	
Titer needed.	
57. Understand and apply colorimetry	
readings	
58 Understand how to produce a	
calibration graph for a colorimeter	
and use it to find unknown	
concentrations.	
59. Understand Beer-Lambert's law to	
determine the concentration of a	
transition metal ion solution.	
Physics –	
60. Understand the use of different	
types of thermometers and how	
they are used to gain accurate	
readings.	
ol. Demonstrate an understanding of	
calibrating thermometers and the	
En Croato and interpret cooling surves	
to determine the molting point	
to determine the meiting point	

from the shape of a curve for a	
substance freezing.	
63. Explain how the rate of cooling is	
related to intermolecular forces	
and the state of the substance.	
64. Understand and reflect on the	
personal responsibilities that must	
be accepted for successful work in	
science.	
65. Understand and develop skills for	
effective and efficient working with	
others.	
66. Demonstrate personal	
development of standard practices	
applicable to working as a	
professional scientist.	
C	
Summer Term	
BIOIOGY -	
67. Understand now to develop a	
nypotnesis.	
bo. Demonstrate an ability to select	
appropriate equipment, techniques	
69. Show an awareness of health and	
safety during practical work	
70 Demonstrate an ability to	
accurately collect and analyse data	
71. Demonstrate an understanding of	
how to process data and carrying	
out statistical analysis.	
72. Interpret data and identify trends	
to draw valid conclusions.	
73. Evaluate data to suggest	
improvements and evaluate	
reliability of the procedures used.	
74. Understand protein structure.	
75. Explain the importance of enzymes	
and how they speed up reactions.	
76. Describe and explains the factors	
that effect enzyme activity.	
77. Describe and explain the factors	
effecting rate of diffusion.	
78. Explain the arrangement and	
movement of molecules in relation	
to diffusion.	
79. Describe and explain factors that	
can effect plant growth and	
distribution.	
80. Describe the sampling techniques	
to sample plant populations.	

Chemistry –	
81. Understand how to use pH meters	
and probes.	
82. Demonstrate an understanding of	
the use of electronic balances and	
how to calibrate them.	
83. Demonstrates the safe and	
accurate use of volumetric	
glassware.	
84. Accurately carry out titration	
experiments and determine the	
end point with precision.	
85. Calculate the unknown	
concentration of a substance from	
titration results.	
86. Understand how a colorimeter is	
used and how to select the correct	
filter needed.	
87. Understand and apply colorimetry	
techniques to produce absorption	
readings.	
88. Understand how to produce a	
calibration graph for a colorimeter	
and use it to find unknown	
concentrations.	
89. Understand Beer-Lambert's law to	
determine the concentration of a	
transition metal ion solution.	
Dhusics	
Physics –	
90. Onderstand the use of different	
types of thermometers and now	
they are used to gain accurate	
91 Demonstrate an understanding of	
calibrating thermometers and the	
importance of doing so	
92. Create and interpret cooling curves	
to determine the melting point	
from the shape of a curve for a	
substance freezing.	
93. Explain how the rate of cooling is	
related to intermolecular forces	
and the state of the substance.	
94. Understand and reflect on the	
personal responsibilities that must	
be accepted for successful work in	
science.	
95. Understand and develop skills for	
effective and efficient working with	
others.	

96. Demonstrate personal development of standard practices	
applicable to working as a	