Subject	Year 12 Core Knowledge –	How to support students' learning
-	Autumn/Spring/Summer term	
Science -	Autumn Torm	
Science –	Atomic structure –	• CCD AOA A lovel Chemistry year 1 revision
Chemistry	1 Interpret simple mass spectra of	COP AQA A level chemistry year 1 revision guida (can be bought through the school)
	elements	guide (can be bought through the school).
	2 Calculate relative atomic mass	COP AQA A level chemistry year 1 textbook (can be bought through the school)
	from isotonic abundance limited	
	to mononuclear ions	CP/Eroo revision recourse
	3 Define first ionisation energy	<u>GB/Free</u> revision resource.
	A Write equations for first and	• Chemiguide:
	successive ionisation energies	nttps://www.cnemguide.co.uk/
	5 Explain how first and successive	Machemguy: Https://www.setuba.com/about/110-140-1
	ionisation energies in Period 3 (Na-	nttps://www.youtube.com/channel/UCyi4QJ
	Ar) and in Group 2 (Be–Ba) give	
	evidence for electron configuration	Free science lessons: https://www.freeseigneelessons.com///
	in sub-shells and in shells	nups://www.treescienceiessons.co.uk/a-
	6. Define relative atomic mass (Ar).	<u>level-revision-videos/a-level-chemistry/</u>
	7. Define relative molecular mass	 Physics and maths tutor https://www.physicsandreathetutor.com/sha
	(Mr).	nttps://www.physicsandmathstutor.com/che
	8. Use equations for moles and	
	concentration accurately.	
	9. Calculate empirical formula from	
	data giving composition by mass or	
	percentage by mass.	
	10. Calculate molecular formula from	
	the empirical formula and relative	
	molecular mass.	
	11. Write balanced equations for	
	reactions studied.	
	12. Balance equations for unfamiliar	
	reactions when reactants and	
	products are specified.	
	Bonding –	
	13. Predict the charge on a simple ion	
	using the position of the element	
	in the Periodic Table.	
	14. Construct formulas for ionic	
	compounds.	
	15. Represent a covalent bond using a	
	line.	
	16. Represent a co-ordinate bond	
	using an arrow.	
	17. Relate the melting point and	
	conductivity of materials to the	
	type of structure and the bonding	
	present.	
	18. Explain the energy changes	
	associated with changes of state.	

19. Bonding - Draw diagrams to	
represent these structures	
involving specified numbers of	
particles.	
20. Explain the shapes of, and bond	
angles in, simple molecules and	
ions with up to six electron pairs	
(including lone pairs of electrons)	
surrounding the central atom.	
21. Use knowledge of electronegativity	
and partial charges to show that a	
bond is polar.	
22. Explain why some molecules with	
polar bonds do not have a	
permanent dipole.	
23. Explain the existence of	
Intermolecular forces between	
Tamiliar and unfamiliar molecules.	
24. Explain now merting and boiling	
intermolecular forces	
25 Draw structural displayed and	
skeletal formulas for given organic	
compounds	
compoundor	
Intro to organic chemistry –	
26. Apply IUPAC rules for	
nomenclature to name organic	
compounds limited to chains and	
rings with up to six carbon atoms	
each.	
27. Apply IUPAC rules for	
nomenclature to draw the	
structure of an organic compound	
from the IUPAC name limited to	
chains and rings with up to six	
carbon atoms each.	
28. Define the term structural isomer.	
29. Intro to organic chemistry - Draw	
and functional group isomore	
30 Define the term stereoisomer	
31 Draw the structural formulas	
of F and 7 isomers	
32. Apply the CIP priority rules	
to E and Z isomers.	
Alkanes and halogenoalkanes –	
33. Explain the economic reasons for	
cracking alkanes and know the	

as a dition of and was durate of as ab	
conditions and products of each	
type.	
34. Explain why sulphur dioxide can be	
removed from flue gases using	
calcium oxide or calcium	
carbonate.	
35. Write balanced equations for the	
steps in a free-radical mechanism.	
36. Explain the free-radical substitution	
mechanism involving initiation,	
propagation and termination steps.	
37. Outline the steps of a nucleophilic	
substitution mechanism.	
38. Explain why the carbon-halogen	
of reaction	
OF reaction.	
39. Explain the role of the reactive	
species as both nucleophile and	
base.	
Spring Torm	
Spring lerin Energetics –	
40 Define standard enthalpy of	
combustion (AHcA)	
41. Define standard enthalpy of	
formation (Δ Hf Θ).	
42. Use the calorimetry equation to	
calculate the molar enthalpy	
change for a reaction.	
43. Use Hess's law to perform	
calculations, including calculation	
of enthalpy changes for reactions	
from enthalpies of combustion or	
from enthalpies of formation.	
44. Define the term mean bond	
enthalpy.	
45. Use mean bond enthalpies to	
calculate an approximate value of	
ΔH for reactions in the gaseous	
phase.	
46. Explain why values from mean	
bond enthalpy calculations differ	
from those determined using	
Hess's law.	
Vinction	
KINETICS –	
47. Define the term activation energy.	
48. Explain why most collisions do not	
ieau to a reaction.	
49. Draw and interpret distribution	
curves for different temperatures.	

	50. Use the Maxwell–Boltzmann	
	distribution to explain why a small	
	temperature increase can lead to a	
	large increase in rate.	
	51. Explain how a change in	
	concentration or a change in	
	pressure influences the rate of a	
	reaction.	
	52. Use a Maxwell–Boltzmann	
	distribution to help explain how a	
	catalyst increases the rate of a	
	reaction involving a gas.	
AI	Ikenes and alcohols –	
	53. Outline the mechanisms for alkene	
	addition reactions.	
	54. Explain the formation of major and	
	minor products by reference to the	
	relative stabilities of primary,	
	secondary and tertiary carbocation	
	intermediates.	
	55. Draw the repeating unit of an	
	addition polymer from a monomer	
	structure.	
	56. Draw the repeating unit from a	
	section of the polymer chain.	
	57. Draw the structure of the alkene	
	monomer from a section of the	
	addition polymer.	
	58. Explain why addition polymers are	
	unreactive.	
	59. Explain the nature of	
	intermolecular forces between	
	molecules of polyalkenes.	
	60. Explain the meaning of the term	
	biofuel.	
	61. Justify the conditions used in the	
	production of ethanol by	
	fermentation of glucose.	
	62. Write equations to support the	
	statement that ethanol produced	
	by fermentation is a carbon neutral	
	fuel and give reasons why this	
	statement is not valid.	
	63. Outline the mechanism for the	
	formation of an alcohol by the	
	reaction of an alkene with steam in	
	the presence of an acid catalyst.	
	64. Discuss the environmental	
	(including ethical) issues linked to	
	decision making about biofuel use.	

65. Write equations for oxidation	
reactions of alcohols and aldehydes	
(use equations showing [O] as the	
oxidant).	
66. Explain how the method used to	
oxidise a primary alcohol	
determines whether an aldehyde	
or carboxylic acid is obtained.	
67. Use chemical tests to distinguish	
between aldehydes and ketones	
including Fehling's solution and	
Ioliens' reagent.	
68. Outline the mechanism for the	
elimination of water from alconois.	
Organic analysis –	
69. Identify the functional groups in a	
molecule using observations and	
information from reactions in the	
specification.	
70. Use precise atomic masses and the	
precise molecular mass to	
determine the molecular formula	
of a compound.	
71. Use infrared spectra and the	
Chemistry Data Booklet to identify	
particular bonds, and therefore	
functional groups, and also to	
identify impurities.	
Summer Term	
Equilibria and redox reactions –	
72. Use Le Chatelier's principle to	
predict qualitatively the effect of	
changes in temperature, pressure	
and concentration on the position	
of equilibrium.	
73. Explain why, for a reversible	
reaction used in an industrial	
process, a compromise	
temperature and pressure may be	
used.	
74. Construct an expression for Kc for a	
homogeneous system in	
equilibrium.	
75. Calculate a value for Kc from the	
equilibrium concentrations for a	
nomogeneous system at constant	
temperature.	
76. Perform calculations involving Kc.	

7	77. Predict the qualitative effects of	
	changes of temperature on the	
	value of Kc.	
7	78. Work out the oxidation state of an	
	element in a compound or ion	
	from the formula.	
7	79. Write half-equations identifying	
	the oxidation and reduction	
	processes in redox reactions.	
8	30. Combine half-equations to give an	
	overall redox equation.	
Grou	ip 2 and group 7 –	
8	31. Explain why acidified silver nitrate	
	solution is used to identify halide	
	ions.	
8	32. Explain the trends in atomic radius	
	and first ionisation energy in group	
	2.	
8	33. Explain the melting point of the	
	group 2 elements in terms of their	
	structure and bonding.	
8	34. Explain why BaCl2 solution is used	
	to test for sulfate ions and why it is	
	acidified.	
8	35. Explain the trend in	
	electronegativity in group 7.	
8	36. Explain the trend in the boiling	
	point of the group 7 elements in	
	terms of their structure and	
	bonding.	
8	37. Explain how acidified silver nitrate	
	solution followed by dilute and	
	concentrated ammonia solutions	
	including simplest ionic equations	
G	Explain how different reagents are	
	used to identify positive and	
	negative ions in an unknown	
	solution	
р 2	39. Explain with equations the	
	reducing power of the halide ions.	
g	90. Explain with equations the	
	oxidising power of the halogens.	