Subject	Year 12 Core Knowledge –	How to support students' learning
-	Autumn/Spring/Summer term	
	······································	
Calanza	Autumn Torm	
Science -	Riological molecules –	
ыоюду	1 Explain what a monomer and	CGP AQA A level Biology year 1 revision
	1. Explain what a monomer and	guide (can be bought through the school).
	2 Identify some biological polymers	CGP AQA A level Biology year 1 textbook
	2. Identify some biological polymers	(can be bought through the school).
	and the monomer norm which they are made	• Seneca:
	3 Explain the concent of	https://senecalearning.com/en-GB/ Free
	5. Explain the concept of	revision resource.
	reactions in forming /breaking	Free science lessons:
	down polymers	https://www.freesciencelessons.co.uk/a-
	A Identify common monosaccharides	level-revision-videos/a-level-chemistry/
	and describe the monosaccharides	Physics and maths tutor:
	from which lactose, maltose and	https://www.physicsandmathstutor.com/biol
	sucrose are made.	ogy-revision/a-level-aga/
	5. Explain what is meant by a	
	glycosidic bond and how they form	
	through condensation.	
	6. Describe how polymerisation of α -	
	glucose can form starch or	
	glycogen.	
	7. Describe the tests for starch, a	
	reducing and non-reducing sugar in	
	detail.	
	8. Explain what is meant by	
	qualitative testing.	
	9. Represent the structure of α -	
	glucose and β –glucose	
	diagrammatically.	
	10. Explain that glycosidic bonds	
	between α–glucose form starch or	
	glycogen and how this relates to	
	their function and properties.	
	11. Explain that glycosidic bonds	
	between β -glucose form cellulose	
	and how this relates to its function	
	and properties.	
	12. Describe the stages of the	
	emulsion test and interpret the	
	12 Describe the structure of	
	triglycerides and explain how they	
	form	
	14 Recognise from diagrams	
	saturated and unsaturated fatty	
	acids	
	15. Describe the structure of	
	phospholipids.	

16 Explain the properties of	
nhospholipids related to their	
phospholipids related to their	
17 Contract the different properties of	
17. Contrast the university properties of	
trigiycerides and prospholipids.	
18. Describe the general structure of	
an amino acid.	
19. Describe the bluret test and now it	
can be interpreted.	
20. Explain the variety of functions	
that proteins have and why they	
are so important to the body.	
21. Explain the principle of	
chromatography.	
22. Identify amino acids in a mixture	
by interpreting chromatograms.	
23. Explain how dipeptides and	
polypeptides form.	
24. Explain the hierarchical	
organisation of protein structure.	
25. Describe the types of bonds	
involved in protein structure and	
the weakness of hydrogen bonds.	
26. Relate the structure of proteins to	
properties of proteins.	
27. Interpret energy level diagrams	
and identify the activation energy.	
28. Explain the induced-fit model of	
enzyme action.	
29. Apply knowledge of tertiary	
structure to explain enzyme	
specificity and the formation of	
enzyme-substrate complexes.	
30. Explain how temperature, pH,	
substrate concentration, enzyme	
concentration and the presence of	
inhibitors affect enzyme catalysis.	
31. Describe and explain trends within	
graphs, relating this back to the	
tertiary structure of active sites	
and the effect of variables (pH,	
substate concentration, enzyme	
concentration and inhibitor	
presence).	
32. Calculate rate of reaction from	
graphs and raw data and explain	
the advantage of using initial rate.	
33. Interpret graphs of enzyme-	
controlled reactions and apply	
knowledge to explain them.	

2.4	Fundational the fraction of solard	
34.	Explain the leatures of good	
	experimental design.	
35.	Process data to calculate rates.	
36.	Represent raw and processed data	
	clearly using tables and graphs.	
37.	Apply knowledge to draw and	
	explain conclusions.	
38.	Evaluate results and conclusions.	
39.	Explain the significance of DNA to	
	organisms.	
40.	Describe the structure of DNA and	
	identify structural components	
	from diagrams.	
41.	Apply knowledge of	
	complementary base pairing rules	
	to work out the frequency of	
	certain bases, when provided with	
	information about the frequency of	
	the other bases.	
42.	Explain why many scientists initially	
	doubted that DNA was the genetic	
	code.	
43.	Explain the role of RNA in	
	transferring genetic information	
	and as a component of the	
	ribosome.	
44.	Describe the structure of RNA and	
	identify structural components of	
45	an RNA nucleotide from diagrams.	
45.	Compare and contrast the	
	similarities and differences	
	between DNA and RNA.	
Calla		
	Identify the features of aukanyotic	
40.	colls	
17	Apply their knowledge of these	
47.	fostures in explaining adaptations	
	of aukaryotic colls	
19	Identify features of prokaryotic	
40.	colls	
10	Identify features of viruses	
49. 50	Explain how viruses replicate	
50. E1	Pacagnica the stages of the call	
51.	cycle: internhase prophase	
	metanhase ananhase and	
	telonhase (including cytokinesis)	
50	Evolution the appearance of cells in	
52.	each stage of mitoric	
52	Evolution the adaptations of	
55.	explain the adaptations of	
	specialised cells in relation to the	

rate of transport across their	
internal and external membranes.	
54. Explain how surface area, number	
of channel or carrier proteins and	
differences in gradients of	
concentration or water potential	
affect the rate of movement across	
cell membranes.	
Spring Term	
Cells –	
55. Explain response of B lymphocytes	
to a foreign antigen, clonal	
selection and the release of	
monoclonal antibodies (the	
humoral response).	
56. Describe the use of vaccines to	
provide protection for individuals	
and populations against disease.	
The concept of herd immunity.	
57. Explain differences between active	
and passive immunity.	
58. Discuss ethical issues associated	
with the use of vaccines and	
monoclonal antibodies.	
59. Evaluate methodology, evidence	
and data relating to the use of	
vaccines and monoclonal	
antibodies.	
60. Relate the base sequence of	
nucleic acids to the amino acid	
sequence of polypeptides, when	
provided with suitable data about	
the genetic code.	
61. Interpret data from experimental	
work investigating the role of	
nucleic acids.	
Biological molecules –	
62. Describe the process of DNA	
replication and explain its	
significance.	
63. Evaluate the work of scientists in	
validating the Watson-Crick model	
of DNA replication and apply your	
knowledge to explain experimental	
results from the work of these	
scientists.	
64. Describe the structure of ATP.	
65. Explain the role of enzymes in	
hydrolysing and synthesising ATP.	

66. Explain the significance of ATP in	
numerous processes within	
organisms, as a supplier of energy	
or phosphate.	
67. Describe the properties that are	
important in water.	
68. Explain the properties of water	
linked to the polar nature of the	
molecule.	
69. Explain the significance of these	
properties to living organisms and	
processes.	
70. Explain what is meant by the term	
inorganic ions and where they	
occur in the body.	
71. Explain the specific role of	
hydrogen ions, iron ions, sodium	
ions and phosphate ions and relate	
the role of each of these ions to	
their properties.	
Organisms exchange substances with their	
environment –	
72. Explain now the size of an	
organism affects its surface area to	
volume ratio and why this is	
Important.	
73. Apply your knowledge of surface	
area to volume ratio, to explain	
adaptations to body shape or the	
development of exchange systems.	
74. Describe and explain the	
relationship between surface area	
to volume ratio and metabolic rate.	
75. Calculate surface area to volume	
76 Describe the internal structure of a	
76. Describe the internal structure of a	
is an adaptation allowing efficient	
77 Explain what a verophytic plant is	
77. Explain what a xelophytic plant is	
and how these balance the needs	
for gas exchange whilst minimizing	
water loss	
78 Explain the adaptations of single-	
celled organisms for efficient gas	
exchange	
79. Describe the structure of insect	
tracheal systems and explain how it	
 vater loss. 78. Explain the adaptations of single- celled organisms for efficient gas exchange. 79. Describe the structure of insect tracheal systems and explain how it 	

is adapted to allow efficient gas	
exchange	
80 Explain how tracheal systems	
balance the needs for gas exchange	
whilst minimising water loss	
81 Describe the structure of fish gills	
and explain how they are adapted	
to maximise gas exchange	
including counter current flow	
82 Describe the structure of the	
human gas exchange system and	
explain the roles of cartilage in the	
trachea and bronchi	
83. Explain the role of ventilation in	
terms of maintaining diffusion	
gradients.	
84. Explain the mechanism of	
breathing in terms of the action of	
the diaphragm muscle and the	
antagonistic action of the external	
and internal intercostal muscles	
and the pressure changes which	
they cause in the thoracic cavity.	
85. Explain the process of gas	
exchange, related to blood	
circulation and ventilation.	
86. Describe the features of the	
squamous epithelium and explain	
how it is adapted to maximising gas	
exchange.	
87. Interpret information relating to	
the effects of lung disease on gas	
exchange and/or ventilation.	
88. Interpret data relating to the	
effects of pollution and smoking on	
the incidence of lung disease.	
89. Analyse and interpret data	
associated with specific risk factors	
and the incidence of lung disease.	
90. Recognise correlations and causal	
relationships.	
91. Explain the general roles of organs	
where key events in direction	
where key events in digestion	
парреп.	
Summer Term	
Genetic information, variation and	
relationships between organisms –	
92. Complete diagrams showing the	
chromosome content of cells after	
chronicoome content of cells after	

the first and second maintin	
aivision, when given the	
chromosome content of the parent	
cell.	
93. Explain the different outcome of	
mitosis and meiosis.	
94. Recognise where meiosis occurs	
when given information about an	
unfamiliar life cycle.	
95. Explain how random fertilisation of	
haploid gametes further increases	
genetic variation within a species.	
96. Use unfamiliar information to	
explain how selection produces	
changes within a population of a	
species.	
97. Interpret data relating to the effect	
of selection in producing change	
within populations.	
98. Show understanding that	
adaptation and selection are major	
factors in evolution and contribute	
to the diversity of living organisms.	
99. Appreciate that advances in	
immunology and genome	
sequencing help to clarify	
evolutionary relationships between	
organisms.	
100. Interpret data relating to	
similarities and differences in the	
base sequences of DNA and in the	
amino acid sequences of proteins	
to.	
101. Suggest relationships between	
different organisms within a species	
and between species.	
Organisms exchange substances with their	
environment -	
102. Explain the nurnose of digestion	
and the role of different enzymes in	
the digestive process and relate the	
specificity of enzymes back to	
protein structure	
103. Explain how endopentidases and	
exopeptidases increase protein	
digestion.	
104. Explain the role of bile salts.	
105. Explain the features of good	
experimental design.	

106. Identify hazards and evaluate	
associated risk when designing	
experiments.	
107 Research and adapt methodology	
as the basis for designing an	
experiment	
108. Process data to calculate rates.	
109 Represent raw and processed data	
clearly using tables and graphs	
110 Apply knowledge to draw and	
explain conclusions.	
111. Evaluate the quality of results and	
reliability of conclusions.	
112. Recall the adaptations of intestinal	
epithelial cells to exchange.	
113. Explain the absorption of amino	
acids and glucose against a	
concentration gradient by co-	
transport.	
114. Explain the role of micelles in the	
absorption of lipids.	
115. Describe the structure of the	
circulatory system, with particular	
reference to the blood vessels	
entering/leaving the heart, lungs	
and kidneys.	
116. Link the structure of the circulatory	
system to its role in exchanging and	
transporting materials.	
117. Relate knowledge of protein	
structure to the structure of	
haemoglobin.	
118. Explain what is meant by the term	
"partial pressure".	
119. Explain how the binding of one	
oxygen molecule changes the shape	
of haemoglobin and how this affects	
the binding of further oxygen	
molecules.	
120. Relate knowledge to explain the	
shape of an oxyhaemoglobin	
dissociation curve.	
121. Explain the effect of carbon dioxide	
concentration on oxygen	
dissociation and relate this	
knowledge to explain oxygen	
loading and unloading in different	
tissues.	
122. Explain differences between the	
oxyhaemoglobin dissociation curves	
of different species and relate these	

differences to the environment in	
which the organisms live to explain	
how these adaptations allow	
organisms to survive.	
123. Describe and label the structure of	
the heart.	
124. Explain differences in the thickness	
of cardiac muscle between the atria	
and ventricles and between	
different sides of the heart.	
125. Explain the role of the atrio-	
ventricular and semilunar valves.	
126. Explain the role of the coronary	
artery.	
127. Explain the cardiac cycle.	
128. Explain the opening and closing of	
AV and semi-lunar valves in terms of	
differences in pressure at different	
stages of the cardiac cycle.	
129. Analyse and interpret data relating	
to pressure and volume changes	
during the cardiac cycle.	
130. Describe the structure of arteries,	
arterioles, veins and capillaries, and	
relate their structure to their	
functions.	
131. Compare and contrast the	
structure and function of different	
blood vessels.	
132. Explain what tissue fluid is and	
which substances it contains.	
133. Explain the formation of tissue	
fluid in terms of hydrostatic	
pressure and explain the	
reabsorption of some tissue fluid	
back into the capillaries, in terms of	
hydrostatic pressure and water	
potential.	
134. Explain the role of the lymph	
system.	
135. Apply knowledge of circulation to	
araw and explain conclusions.	
136. Analyse and interpret data	
associated with specific risk factors	
and the incidence of cardiovascular	
alsease.	
137. Recognise correlations and causal	
relationships.	
138. Explain the role of the xylem in	
piants.	

 139. Explain how water transport in the xylem is linked to transpiration in the leaves. 140. Explain the cohesion-tension theory of water transport. 141. Explain the factors which affect transpiration. 142. Explain the role of the phloem in plants. 143. Explain what is meant by translocation. 144. Explain the mass flow hypothesis as a mechanism for translocation. 145. Interpret evidence from tracer and ringing experiments and evaluate the evidence for and against the mass flow hypothesis. 	