Subject	Year 12 Core Knowledge –	How to support students' learning
	Autumn/Spring/Summer term	
Further	Autumn Term	
Maths	 Pure – Solve quadratic equations with complex roots. Add, subtract and multiply and divide complex numbers. Solve problems involving complex numbers by equating real and imaginary parts. Represent a complex number on an Argand diagram. Add and subtract matrices of the same order. Multiply a matrix by a scalar. Know that matrix multiplication is associative but not commutative. Find the matrix associated with a linear transformation in two dimensions (including reflections, rotations, enlargements, stretches, shears). Find the matrix associated with a linear transformation in three dimensions. Understand successive transformations in two dimensions. Find invariant points. Find invariant points. Find invariant lines. Know the relationship between the roots and coefficients of quadratic, cubic and quartic equations. Form new equations whose roots are related to the roots of a given equation. Solve polynomial equations with complex roots. Use proof by induction to prove the given results for the sum of a series. Use proof by induction to prove the given results for the nth term of a sequence. Use proof by induction to prove the given results for the nth power of a matrix. Find the determinant of a 2x2 matrix. 	 If students need support with their learning, almost everything they need can be found on Integral Maths. They have a unique login for this and are regularly set homework tasks. There is a wealth of videos and resources which they can use to independently recap any topics in which they've struggled. For past exam papers; https://www.physicsandmathstutor.com and www.mathsgenie.co.uk offers a range of past papers, mark schemes and model answers. If students need support or guidance with any of this, their class teacher can direct them to the appropriate content.

20.	Understand that the determinant	
	of a 2x2 matrix represents the area	
	scale factor of the corresponding	
	transformation.	
21.	Know that the determinant of a	
	3x3 matrix represents the volume	
	scale factor of the corresponding	
	transformation.	
22.	Understand the significance of a	
	zero determinant.	
23.	Know what is meant by a singular	
	matrix.	
24.	Find the inverse of a non-singular	
	2x2 matrix.	
25.	Use a calculator to find the	
	determinant and inverse of a 3x3	
	matrix.	
26.	Use the product rule for inverse	
	matrices.	
27.	Use matrices to solve a pair of	
	linear simultaneous equations in	
	two unknowns.	
28.	Use matrices to solve three linear	
	simultaneous equations in three	
	unknowns.	
29.	Know and use the conversion	
	between degrees and radians.	
30.	Know the double angle/addition	
	formulae.	
	_	
• •	Summer Term	
Pure –		
	Find the modulus of a complex	
	number.	
32.	Find the principal argument of a	
	complex number using radians.	
33.	Express a complex number in	
	modulus-argument form.	
34.	Multiply and divide complex	
	numbers in modulus-argument	
	form.	
35.	Represent multiplication and	
	division of two complex numbers	
	on an Argand diagram.	
36.	Represent and interpret sets of	
	complex numbers as loci on an	
	Argand diagram: lines of the form	
	z-a = z-b , half-lines of the	
	form $\arg(z - a) = \theta$, circles of the	
	form z – a = r.	

37. Represent and interpret regions	
defined by inequalities based on	
the above.	
Mechanics –	
38. Draw and interpret position-time,	
distance-time, velocity-time,	
speed-time and acceleration-time	
graphs and how to use these to	
solve problems connected with	
motion in a straight line.	
39. Find average speed and average	
velocity.	
40. Use the constant acceleration	
formulae to solve problems	
involving linear motion.	
41. Solve with problems involving	
motion under gravity.	
42. Use calculus to derive expressions	
for position, velocity and	
acceleration as functions of time.	
43. Solve problems involving linear	
motion with variable acceleration.	
44. Draw a diagram showing the forces	
acting on a body.	
45. Apply Newton's laws of motion to	
problems in one or more	
dimensions.	
46. Resolve a force into components	
having selected suitable directions	
for resolution.	
47. Find the resultant of several	
concurrent forces.	
48. Solve problems involving forces in	
equilibrium. 49. Formulate the equation of motion	
of a particle which is being acted	
on by several forces.	
50. Model friction using $F = \mu R$.	
50. Model including $r = \mu \kappa$. 51. Derive and use the result that a	
body on a rough slope inclined at	
angle α to the horizontal is on the	
point of slipping if μ = tan α .	
52. Calculate the moment about a	
fixed-point O of a force acting on a	
body as the product of the force	
and the perpendicular distance of	
O from the line of action of the	
force.	
53. Know that an object is in	
equilibrium if the resultant of all	

	the applied forces acting on it is	
	zero and the sum of their moments	
	about any point is also zero.	
54.	Calculate the moment about a	
	fixed point O of a force acting on a	
	body by resolving the force into	
	components.	
55.	Calculate the work done by a force	
	which moves along its line of	
	action.	
56.	Use the principle of conservation	
	of energy.	
57.	Use the work–energy principle.	
58.	Mechanics - Calculate kinetic	
	energy.	
59.	Calculate gravitational potential	
	energy.	
60.	Calculate the work done by a force	
	which moves at an angle to its line	
	of action.	
61.	Understand and use the concept of	
	power.	
62.	Find the loss of kinetic energy	
	during a direct impact.	
63.	Apply the principle of conservation	
	of momentum to direct impacts.	
64.	Understand Newton's law of	
	impact and know the meaning of	
	coefficient of restitution.	
65.	Find the dimensions of a quantity	
	in terms of M, L and T.	
66.	Change the units in which a	
	quantity is given.	
67.	Use dimensional analysis to	
	determine unknown indices in a	
	proposed formula or check a	
	relationship for consistency.	
68.	Identify the forces acting on a body	
	in circular motion.	
69.	Calculate acceleration towards the	
	centre of circular motion.	
70.	Model situations involving circular	
	motion with uniform speed in a	
	horizontal plane.	
	onal Pure –	
71.	Be able to work with general	
	sequences given as recurrence	
	relations or by position-to-term	
	(closed form) formulae.	

72.	Use induction to prove results	
	relating to both sequences and	
	series.	
73.	Describe various possibilities for	
	the behaviour of sequences.	
74.	Use the limit of the nth term of a	
	sequence as n tends to infinity,	
	including steady-states.	
75.	Work with the Fibonacci numbers	
	(and other Fibonacci-like	
	sequences, such as the Lucas	
	numbers), and understand their	
	properties.	
76	Solve a first-order linear recurrence	
,	relation with constant coefficients,	
	using the associated auxiliary	
	equation and complementary	
	function.	
//.	Apply their knowledge of	
	recurrence relations to modelling.	
/8.	Work with numbers written in base	
	n, where n is a positive integer.	
/9.	Use (without proof) standard tests	
	for divisibility by 2, 3, 4, 5, 8, 9 and	
	11.	
80.	Establish suitable (algorithmic)	
	tests for divisibility by other primes	
	less than 50.	
	Use the division algorithm.	
82.	Use finite arithmetic's.	
83.	Solve single linear congruences.	
84.	Understand the concepts of prime	
	numbers, composite numbers,	
	highest common factors (hcf), and	
	coprimality (relative primeness).	
85.	Know and be able to use Euclid's	
	lemma.	
86.	Work with binary operations and	
	their properties when defined on	
	given sets.	
87	Construct Cayley tables for given	
	finite sets under the action of a	
	given binary operation.	
00		
	Use the definition of a group, for	
	example to show that a given	
	structure is, or is not, a group.	
89.	Use the Latin square property for	
	group tables.	
90.	Determine the orders of elements	
	in a given group.	

91. Use the definition of a subgroup,	
find subgroups and show that	
given subsets are, or are not,	
proper subgroups.	
92. Understand that a cyclic group is	
generated by "powers" of a single	
element.	
93. Be familiar with the structure of	
finite groups up to, and including,	
order seven, and be able to apply	
this knowledge in solving	
problems.	
94. Use the definition, in geometrical	
terms, of the vector product and	
be able to form the vector product	
in magnitude and direction, and in	
component form.	
95. Understand the anti-commutative	
and distributive properties of the	
vector product.	
96. Use the vector product to calculate	
areas of triangles and	
parallelograms.	
97. Understand the significance of a x	
b = 0.	
98. Work with functions of two	
variables, given either explicitly in	
the form $z = f(x, y)$ or implicitly in	
the form $g(x, y, z) = c$.	
99. Sketch sections and contours, and	
know how these are related to the	
surface.	
100. Find first and second derivatives,	
including mixed derivatives.	
101. Work with stationary points and	
know they can be maxima, minima	
or saddle-points.	