Subject	Year 13 Core Knowledge –	How to support students' learning
	Autumn/Spring/Summer term	
Science - Chemistry	 Autumn Term Isomerism and carbonyl compounds - Draw the structural formulas and displayed formulas of enantiomers. Understand how racemic mixtures (racemates) are formed and why they are optically inactive. Outline the nucleophilic addition mechanism for reduction reactions with NaBH4 (the nucleophile should be shown as H:-). Write overall equations for the formation of hydroxynitriles using HCN. Outline the nucleophilic addition mechanism for the reaction with KCN followed by dilute acid. Explain why nucleophilic addition reactions of KCN, followed by dilute acid, can produce a mixture of enantiomers. Describe the reactions of esters to produce soap and biodiesels. Outline the mechanism of nucleophilic addition reactions of acyl chlorides and acid anhydrides with water, alcohols, ammonia and primary amines. Aromatic compounds and amines - Use thermochemical evidence from enthalpies of hydrogenation to account for benzene stability. Explain why electrophilic substitution reactions of acyl chlorides and acid anhydrides with water, alcohols, attractions of acyl chlorides and acid anhydrides with mater, alcohols, attractions of acyl chlorides and acid anhydrides with water, alcohols, attractions of acyl chlorides and acid anhydrides with water, alcohols, attractions of the presence to electrophilic addition reactions. Outline the electrophilic substitution mechanisms of nitration, including the generation of the nitronium ion. Outline the electrophilic substitution mechanisms of Friedel Craft's acylation, including formation of the acylium ion using AlCl3 as a catalyst. Explain the difference in base strength in terms of the availability 	 CGP AQA A level Chemistry year 1 and 2 revision guide (can be bought through the school). CGP AQA A level Chemistry year 1 and 2 textbook (can be bought through the school). Seneca: https://senecalearning.com/en-GB/ Free revision resource. Chemguide https://www.chemguide.co.uk/ MaChemguy https://www.youtube.com/channel/UCyI4QJ XN92NapzmKAn-fJgQ Freesciencelessons https://www.freesciencelessons.co.uk/a- level-revision-videos/a-level-chemistry/ Physics and maths tutor https://www.physicsandmathstutor.com/che mistry-revision/a-level-aqa/ There is a revision schedule that has been emailed out to parents, please encourage your child to follow it.

	of the lone pair of electrons on the	
	N atom of an amine.	
	14. Outline the mechanism of the	
	nucleophilic substitution reactions	
	of amines.	
	Thermodynamics -	
	15. Construct Born–Haber cycles to	
	calculate lattice enthalpies using	
	enthalpy changes.	
	16. Understand and explain what	
	Born–Haber cycles are.	
	17. Compare lattice enthalpies from	
	Born–Haber cycles with those from	
	calculations based on a perfect	
	ionic model to provide evidence for	
	covalent character in ionic	
	compounds.	
	18. Perform calculations of an enthalpy	
	change using Born Haber cycles.	
	19. Calculate entropy changes from	
	absolute entropy values.	
	20. Use the relationship $\Delta G = \Delta H - T\Delta S$	
	to determine how ΔG varies with	
	temperature.	
	21. Use the relationship $\Delta G = \Delta H - T\Delta S$	
	to determine the temperature at	
	which a reaction becomes feasible.	
	Rate equations and Kp -	
	22. Perform calculations using the rate	
	equation.	
	23. Explain the qualitative effect of	
	changes in temperature on the rate	
	constant k.	
	24. Perform calculations using the	
	equation $k = Ae - Ea/RT$.	
	25. Understand that the equation $k =$	
	Ae-Ea/RT can be rearranged into	
	the form $\ln k = -Ea / RT + \ln A$ and	
	know how to use this rearranged	
	equation with experimental data to	
	plot a straight-line graph with slope	
	–Ea/R.	
	26. Use concentration–time graphs to	
	deduce the rate of a reaction.	
	27. Use initial concentration-time data	
	to deduce the initial rate of a	
	reaction.	
<u>. </u>		

28. Derive the rate equation for a	
reaction from the orders with	
respect to each of the reactants.	
29. Use the orders with respect to	
reactants to provide information	
about the rate	
determining/limiting step of a	
reaction.	
30. Derive partial pressure from mole	
fraction and total pressure.	
31. Construct an expression for Kp for	
a homogeneous system in	
equilibrium.	
 Predict the qualitative effects of changes in temperature and 	
pressure on the position of	
equilibrium.	
33. Predict the qualitative effects of	
changes in temperature on the	
value of Kp.	
34. Understand that, whilst a catalyst	
can affect the rate of attainment of	
an equilibrium, it does not affect	
the value of the equilibrium	
constant.	
Spring Term	
Spring Term Polymers -	
Polymers - 35. Draw the repeating unit from	
Polymers - 35. Draw the repeating unit from monomer structure(s) and draw	
Polymers - 35. Draw the repeating unit from monomer structure(s) and draw the repeating unit from a section of	
Polymers - 35. Draw the repeating unit from monomer structure(s) and draw the repeating unit from a section of the polymer chain for addition and	
Polymers - 35. Draw the repeating unit from monomer structure(s) and draw the repeating unit from a section of the polymer chain for addition and condensation polymers.	
 Polymers - 35. Draw the repeating unit from monomer structure(s) and draw the repeating unit from a section of the polymer chain for addition and condensation polymers. 36. Explain the nature of the 	
 Polymers - 35. Draw the repeating unit from monomer structure(s) and draw the repeating unit from a section of the polymer chain for addition and condensation polymers. 36. Explain the nature of the intermolecular forces between 	
 Polymers - 35. Draw the repeating unit from monomer structure(s) and draw the repeating unit from a section of the polymer chain for addition and condensation polymers. 36. Explain the nature of the intermolecular forces between molecules of condensation 	
 Polymers - 35. Draw the repeating unit from monomer structure(s) and draw the repeating unit from a section of the polymer chain for addition and condensation polymers. 36. Explain the nature of the intermolecular forces between molecules of condensation polymers. 	
 Polymers - 35. Draw the repeating unit from monomer structure(s) and draw the repeating unit from a section of the polymer chain for addition and condensation polymers. 36. Explain the nature of the intermolecular forces between molecules of condensation polymers. 37. Explain why polyesters and 	
 Polymers - 35. Draw the repeating unit from monomer structure(s) and draw the repeating unit from a section of the polymer chain for addition and condensation polymers. 36. Explain the nature of the intermolecular forces between molecules of condensation polymers. 37. Explain why polyesters and polyamides can be hydrolysed but 	
 Polymers - 35. Draw the repeating unit from monomer structure(s) and draw the repeating unit from a section of the polymer chain for addition and condensation polymers. 36. Explain the nature of the intermolecular forces between molecules of condensation polymers. 37. Explain why polyesters and 	
 Polymers - 35. Draw the repeating unit from monomer structure(s) and draw the repeating unit from a section of the polymer chain for addition and condensation polymers. 36. Explain the nature of the intermolecular forces between molecules of condensation polymers. 37. Explain why polyesters and polyamides can be hydrolysed but 	
 Polymers - 35. Draw the repeating unit from monomer structure(s) and draw the repeating unit from a section of the polymer chain for addition and condensation polymers. 36. Explain the nature of the intermolecular forces between molecules of condensation polymers. 37. Explain why polyesters and polyamides can be hydrolysed but 	
 Polymers - 35. Draw the repeating unit from monomer structure(s) and draw the repeating unit from a section of the polymer chain for addition and condensation polymers. 36. Explain the nature of the intermolecular forces between molecules of condensation polymers. 37. Explain why polyesters and polyamides can be hydrolysed but polyalkenes cannot. 	
 Polymers - 35. Draw the repeating unit from monomer structure(s) and draw the repeating unit from a section of the polymer chain for addition and condensation polymers. 36. Explain the nature of the intermolecular forces between molecules of condensation polymers. 37. Explain why polyesters and polyamides can be hydrolysed but 	
 Polymers - 35. Draw the repeating unit from monomer structure(s) and draw the repeating unit from a section of the polymer chain for addition and condensation polymers. 36. Explain the nature of the intermolecular forces between molecules of condensation polymers. 37. Explain why polyesters and polyamides can be hydrolysed but polyalkenes cannot. 	
 Polymers - 35. Draw the repeating unit from monomer structure(s) and draw the repeating unit from a section of the polymer chain for addition and condensation polymers. 36. Explain the nature of the intermolecular forces between molecules of condensation polymers. 37. Explain why polyesters and polyamides can be hydrolysed but polyalkenes cannot. 	
 Polymers - 35. Draw the repeating unit from monomer structure(s) and draw the repeating unit from a section of the polymer chain for addition and condensation polymers. 36. Explain the nature of the intermolecular forces between molecules of condensation polymers. 37. Explain why polyesters and polyamides can be hydrolysed but polyalkenes cannot. Amino acids, proteins and DNA - 38. Draw the structures of amino acids as zwitterions and the ions formed 	
 Polymers - 35. Draw the repeating unit from monomer structure(s) and draw the repeating unit from a section of the polymer chain for addition and condensation polymers. 36. Explain the nature of the intermolecular forces between molecules of condensation polymers. 37. Explain why polyesters and polyamides can be hydrolysed but polyalkenes cannot. Amino acids, proteins and DNA - 38. Draw the structures of amino acids as zwitterions and the ions formed from amino acids in acid solution 	
 Polymers - 35. Draw the repeating unit from monomer structure(s) and draw the repeating unit from a section of the polymer chain for addition and condensation polymers. 36. Explain the nature of the intermolecular forces between molecules of condensation polymers. 37. Explain why polyesters and polyamides can be hydrolysed but polyalkenes cannot. Amino acids, proteins and DNA - 38. Draw the structures of amino acids as zwitterions and the ions formed from amino acids in acid solution and alkaline solution. 	
 Polymers - 35. Draw the repeating unit from monomer structure(s) and draw the repeating unit from a section of the polymer chain for addition and condensation polymers. 36. Explain the nature of the intermolecular forces between molecules of condensation polymers. 37. Explain why polyesters and polyamides can be hydrolysed but polyalkenes cannot. Amino acids, proteins and DNA - 38. Draw the structures of amino acids as zwitterions and the ions formed from amino acids in acid solution and alkaline solution. 39. Draw the structure of a peptide 	

40. Identify primary, secondary and	
tertiary structures of proteins in	
diagrams.	
41. Explain how these structures are	
maintained by hydrogen bonding	
and disulfide bridges (S-S bonds).	
42. Explain why a stereospecific active	
site of an enzyme can only bond to	
one enantiomeric form of a	
substrate or drug.	
43. Explain how hydrogen bonding	
between base pairs leads to the	
two complementary strands of	
DNA.	
44. Explain why cisplatin prevents DNA	
replication and explain why such	
drugs can have adverse effects.	
Electrode potentials and cells	
45. Use EO values to predict the	
direction of simple redox reactions.	
46. Calculate the EMF of a cell.	
47. Write and apply the conventional	
representation of a cell.	
48. Use given electrode data to deduce	
the reactions occurring in non-	
rechargeable and rechargeable	
cells.	
49. Deduce the EMF of a cell.	
50. Explain how the electrode	
reactions can be used to generate	
an electric current.	
Acida hasses and plu	
Acids, bases and pH -	
51. Calculate the pH of a solution of a	
strong acid from its concentration.	
52. Use Kw to calculate the pH of a	
strong base from its concentration.	
53. Construct an expression for Ka.	
54. Perform calculations relating the	
pH of a weak acid to the	
concentration of the acid and the	
dissociation constant, Ka.	
55. Sketch and explain the shapes of	
typical pH curves.	
56. Use pH curves to select an	
appropriate indicator.	
57. Explain qualitatively the action of	
acidic and basic buffers.	
58. Acids, bases and pH - Calculate the	
pH of acidic buffer solutions.	

Organic synthesis -	
59. Explain why chemists aim to design	
processes that do not require a	
solvent and that use non-	
hazardous starting materials.	
60. Use reactions in the specification	
to devise a synthesis, with up to	
four steps, for an organic	
compound.	
61. Explain why TMS is a suitable	
substance to use as a standard in	
NMR.	
62. Use 1H NMR and 13C NMR spectra	
and chemical shift data from the	
Chemistry Data Booklet to suggest	
possible structures or part	
structures for molecules.	
63. Use integration data from 1H NMR	
spectra to determine the relative	
numbers of equivalent protons in	
the molecule.	
64. Use the n+1 rule to deduce the	
spin-spin splitting patterns of	
adjacent, non-equivalent protons,	
limited to doublet, triplet and	
quartet formation in aliphatic	
compounds.	
65. Calculate Rf values from a	
chromatogram.	
66. Compare retention times and Rf	
values with standards to identify	
different substances.	
Transition metals -	
67. Explain the chelate effect, in terms	
of the balance between the	
entropy and enthalpy change in	
these reactions.	
68. Understand and draw the shape of	
complex ions.	
69. Determine the concentration of a	
coloured complex ion by	
colorimetry.	
70. Perform titration calculations	
involving redox reactions of	
transition metals.	
71. Explain the importance of variable	
oxidation states in catalysis.	
72. Write equations to show how	
V2O5, Fe2+ ions and Mn2+ ions act	
as catalysts.	

	 73. Explain, in terms of the charge/size ratio of the metal ion, why the acidity of [M(H2O)6]3+ is greater than that of [M(H2O)6]2+. 74. Describe and explain the simple test-tube reactions of: M2+(aq) ions, limited to M = Fe and Cu, and of M3+(aq) ions, limited to M = Al and Fe, with the bases OH–, NH3 and CO32–. 	
Peri	 iod 3 elements - 75. Explain the trend in the melting point of the oxides of the elements Na to S in terms of their structure and bonding. 76. Explain the trends in the reactions of the oxides with water in terms of the type of bonding present in each oxide. 77. Write equations for the reactions that occur between the oxides of the elements Na to S and given acids and bases. 	